(0) Obligation:
Clauses:
app3_a(Xs, Ys, Zs, Us) :- ','(app(Xs, Ys, Vs), app(Vs, Zs, Us)).
app3_b(Xs, Ys, Zs, Us) :- ','(app(Ys, Zs, Vs), app(Xs, Vs, Us)).
app([], Ys, Ys).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
Query: app3_b(g,g,g,a)
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
app3_b_in: (b,b,b,f)
app_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
app3_b_in_ggga(Xs, Ys, Zs, Us) → U3_ggga(Xs, Ys, Zs, Us, app_in_gga(Ys, Zs, Vs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U5_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U5_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ggga(Xs, Ys, Zs, Us, app_out_gga(Ys, Zs, Vs)) → U4_ggga(Xs, Ys, Zs, Us, app_in_gga(Xs, Vs, Us))
U4_ggga(Xs, Ys, Zs, Us, app_out_gga(Xs, Vs, Us)) → app3_b_out_ggga(Xs, Ys, Zs, Us)
The argument filtering Pi contains the following mapping:
app3_b_in_ggga(
x1,
x2,
x3,
x4) =
app3_b_in_ggga(
x1,
x2,
x3)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x1,
x2,
x3,
x5)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5) =
U5_gga(
x1,
x2,
x3,
x5)
U4_ggga(
x1,
x2,
x3,
x4,
x5) =
U4_ggga(
x1,
x2,
x3,
x5)
app3_b_out_ggga(
x1,
x2,
x3,
x4) =
app3_b_out_ggga(
x1,
x2,
x3,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
app3_b_in_ggga(Xs, Ys, Zs, Us) → U3_ggga(Xs, Ys, Zs, Us, app_in_gga(Ys, Zs, Vs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U5_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U5_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ggga(Xs, Ys, Zs, Us, app_out_gga(Ys, Zs, Vs)) → U4_ggga(Xs, Ys, Zs, Us, app_in_gga(Xs, Vs, Us))
U4_ggga(Xs, Ys, Zs, Us, app_out_gga(Xs, Vs, Us)) → app3_b_out_ggga(Xs, Ys, Zs, Us)
The argument filtering Pi contains the following mapping:
app3_b_in_ggga(
x1,
x2,
x3,
x4) =
app3_b_in_ggga(
x1,
x2,
x3)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x1,
x2,
x3,
x5)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5) =
U5_gga(
x1,
x2,
x3,
x5)
U4_ggga(
x1,
x2,
x3,
x4,
x5) =
U4_ggga(
x1,
x2,
x3,
x5)
app3_b_out_ggga(
x1,
x2,
x3,
x4) =
app3_b_out_ggga(
x1,
x2,
x3,
x4)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
APP3_B_IN_GGGA(Xs, Ys, Zs, Us) → U3_GGGA(Xs, Ys, Zs, Us, app_in_gga(Ys, Zs, Vs))
APP3_B_IN_GGGA(Xs, Ys, Zs, Us) → APP_IN_GGA(Ys, Zs, Vs)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U5_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U3_GGGA(Xs, Ys, Zs, Us, app_out_gga(Ys, Zs, Vs)) → U4_GGGA(Xs, Ys, Zs, Us, app_in_gga(Xs, Vs, Us))
U3_GGGA(Xs, Ys, Zs, Us, app_out_gga(Ys, Zs, Vs)) → APP_IN_GGA(Xs, Vs, Us)
The TRS R consists of the following rules:
app3_b_in_ggga(Xs, Ys, Zs, Us) → U3_ggga(Xs, Ys, Zs, Us, app_in_gga(Ys, Zs, Vs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U5_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U5_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ggga(Xs, Ys, Zs, Us, app_out_gga(Ys, Zs, Vs)) → U4_ggga(Xs, Ys, Zs, Us, app_in_gga(Xs, Vs, Us))
U4_ggga(Xs, Ys, Zs, Us, app_out_gga(Xs, Vs, Us)) → app3_b_out_ggga(Xs, Ys, Zs, Us)
The argument filtering Pi contains the following mapping:
app3_b_in_ggga(
x1,
x2,
x3,
x4) =
app3_b_in_ggga(
x1,
x2,
x3)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x1,
x2,
x3,
x5)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5) =
U5_gga(
x1,
x2,
x3,
x5)
U4_ggga(
x1,
x2,
x3,
x4,
x5) =
U4_ggga(
x1,
x2,
x3,
x5)
app3_b_out_ggga(
x1,
x2,
x3,
x4) =
app3_b_out_ggga(
x1,
x2,
x3,
x4)
APP3_B_IN_GGGA(
x1,
x2,
x3,
x4) =
APP3_B_IN_GGGA(
x1,
x2,
x3)
U3_GGGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGGA(
x1,
x2,
x3,
x5)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4,
x5) =
U5_GGA(
x1,
x2,
x3,
x5)
U4_GGGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGGA(
x1,
x2,
x3,
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP3_B_IN_GGGA(Xs, Ys, Zs, Us) → U3_GGGA(Xs, Ys, Zs, Us, app_in_gga(Ys, Zs, Vs))
APP3_B_IN_GGGA(Xs, Ys, Zs, Us) → APP_IN_GGA(Ys, Zs, Vs)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U5_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U3_GGGA(Xs, Ys, Zs, Us, app_out_gga(Ys, Zs, Vs)) → U4_GGGA(Xs, Ys, Zs, Us, app_in_gga(Xs, Vs, Us))
U3_GGGA(Xs, Ys, Zs, Us, app_out_gga(Ys, Zs, Vs)) → APP_IN_GGA(Xs, Vs, Us)
The TRS R consists of the following rules:
app3_b_in_ggga(Xs, Ys, Zs, Us) → U3_ggga(Xs, Ys, Zs, Us, app_in_gga(Ys, Zs, Vs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U5_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U5_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ggga(Xs, Ys, Zs, Us, app_out_gga(Ys, Zs, Vs)) → U4_ggga(Xs, Ys, Zs, Us, app_in_gga(Xs, Vs, Us))
U4_ggga(Xs, Ys, Zs, Us, app_out_gga(Xs, Vs, Us)) → app3_b_out_ggga(Xs, Ys, Zs, Us)
The argument filtering Pi contains the following mapping:
app3_b_in_ggga(
x1,
x2,
x3,
x4) =
app3_b_in_ggga(
x1,
x2,
x3)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x1,
x2,
x3,
x5)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5) =
U5_gga(
x1,
x2,
x3,
x5)
U4_ggga(
x1,
x2,
x3,
x4,
x5) =
U4_ggga(
x1,
x2,
x3,
x5)
app3_b_out_ggga(
x1,
x2,
x3,
x4) =
app3_b_out_ggga(
x1,
x2,
x3,
x4)
APP3_B_IN_GGGA(
x1,
x2,
x3,
x4) =
APP3_B_IN_GGGA(
x1,
x2,
x3)
U3_GGGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGGA(
x1,
x2,
x3,
x5)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4,
x5) =
U5_GGA(
x1,
x2,
x3,
x5)
U4_GGGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGGA(
x1,
x2,
x3,
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
The TRS R consists of the following rules:
app3_b_in_ggga(Xs, Ys, Zs, Us) → U3_ggga(Xs, Ys, Zs, Us, app_in_gga(Ys, Zs, Vs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U5_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U5_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ggga(Xs, Ys, Zs, Us, app_out_gga(Ys, Zs, Vs)) → U4_ggga(Xs, Ys, Zs, Us, app_in_gga(Xs, Vs, Us))
U4_ggga(Xs, Ys, Zs, Us, app_out_gga(Xs, Vs, Us)) → app3_b_out_ggga(Xs, Ys, Zs, Us)
The argument filtering Pi contains the following mapping:
app3_b_in_ggga(
x1,
x2,
x3,
x4) =
app3_b_in_ggga(
x1,
x2,
x3)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x1,
x2,
x3,
x5)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5) =
U5_gga(
x1,
x2,
x3,
x5)
U4_ggga(
x1,
x2,
x3,
x4,
x5) =
U4_ggga(
x1,
x2,
x3,
x5)
app3_b_out_ggga(
x1,
x2,
x3,
x4) =
app3_b_out_ggga(
x1,
x2,
x3,
x4)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP_IN_GGA(.(X, Xs), Ys) → APP_IN_GGA(Xs, Ys)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP_IN_GGA(.(X, Xs), Ys) → APP_IN_GGA(Xs, Ys)
The graph contains the following edges 1 > 1, 2 >= 2
(12) YES